无穷级数


数组无限求和

$$\left\{ \begin{array}{l} \text{数项级数}\left\{ \begin{array}{l} \text{一般级数:绝对值 }or \ \ \ \text{定义}\\ \text{正项级数:比较}+\text{极限}\left( \text{等价} \right)\\ \text{交错级数:绝对值收敛}+\text{莱布尼茨}+\text{定义}\\ \end{array} \right.\\ \text{幂级数求和}\left\{ \begin{array}{l} \text{常规:拆配凑补}\\ \text{微分方程:代入、合并}\\ \text{混合型:求导积分}\\ \end{array} \right.\\ \text{展开}\left\{ \begin{array}{l} x=0\\ \text{求导积分}\\ \text{合并最简}\\ \end{array} \right.\\ \end{array} \right. $$

常数项级数

$$
\sum_{n=1}^∞ u_n=u_1+u_2+…+u_n+…
$$

线性性质:$\sum_{n=1}^{∞}(au_n+bv_n)=a\sum_{n=1}^{∞}u_n+b\sum_{n=1}^{∞}v_n$

前有限项不改变收敛性:$\underset{n=1}{\overset{∞}{\sum}}u_n\Rightarrow\underset{n=m}{\overset{∞}{\sum}}u_n$收敛

级数收敛必要条件:

  • $\underset{n=1}{\overset{∞}{\sum}}u_n$收敛$\Leftrightarrow \underset{n \rightarrow ∞}{\lim}S_n$存在
  • $\underset{n=1}{\overset{∞}{\sum}}u_n$收敛$\begin{array}{c}
    \Rightarrow\
    \nLeftarrow\
    \end{array}\underset{n \rightarrow ∞}{\lim}u_n=0$
  • $\underset{n=1}{\overset{∞}{\sum}}(u_{n+1}-u_n)$收敛$\Leftrightarrow{\lim}u_n$存在

敛散性判别方法

正项级数

$$
\sum u_n, u_n>0
$$

  • $\sum_{n=1}^{\infty}{u_n}$收敛$\Leftrightarrow{S_n}$有界

  • $\sum u_n$收敛$\Rightarrow$$\underset{n\rightarrow \infty}{\lim}u_n=0$

  • 极限推敛散而非敛散推极限

  • 若选项说了正项级数,有的没说具体什么级数,没说具体级数的排除

  • 比较判别法:若$u_n\le v_n$

    $\underset{n=1}{\overset{∞}{\sum}}v_n$收敛$\Leftrightarrow\underset{n=1}{\overset{∞}{\sum}}u_n$收敛

    $\underset{n=1}{\overset{∞}{\sum}}u_n$发散$\Leftrightarrow \underset{n=1}{\overset{∞}{\sum}}v_n$发散

    $\underset{n\rightarrow \infty}{\lim}\dfrac{u_n}{v_n}=\left\{ \begin{array}{l} 0\Rightarrow u_n\text{是}v_n\text{高阶无穷小}\Rightarrow \left\{ \begin{array}{l} \sum_{n=1}^{\infty}{v_n}\text{收敛}\Rightarrow \sum_{n=1}^{\infty}{u_n}\text{收敛}\\ \\ \sum_{n=1}^{\infty}{u_n}\text{发散}\Rightarrow \sum_{n=1}^{\infty}{v_n}\text{发散}\\ \end{array} \right.\\ \\ \infty \Rightarrow v_n\text{是}u_n\text{高阶无穷小}\Rightarrow \left\{ \begin{array}{l} \sum_{n=1}^{\infty}{u_n}\text{收敛}\Rightarrow \sum_{n=1}^{\infty}{v_n}\text{收敛}\\ \\ \sum_{n=1}^{\infty}{v_n}\text{发散}\Rightarrow \sum_{n=1}^{\infty}{u_n}\text{发散}\\ \end{array} \right.\\ \\ A\ne 0\Rightarrow u_n\text{是}v_n\text{同阶无穷小}\Rightarrow \sum_{n=1}^{\infty}{u_n}\sum_{n=1}^{\infty}{v_n}\text{同敛散}\\ \end{array} \right. $
  • 比值判别法:(达朗贝尔判别法)

    $\underset{n\rightarrow {\infty }}{\lim}\dfrac{u_{n+1}}{u_n}=\rho \left\{ \begin{array}{l}<1\ \ \text{收敛}\\>1\ \ \text{发散}\\ =1\ \ \text{失效}\\ \end{array} \right. $

    [$a^n;n!;n^n$]

  • 根植判别法:(柯西)

    $\underset{n\rightarrow {\infty }}{\lim}\sqrt[n]{u_n}=\rho \left\{ \begin{array}{l} <1\ \ \text{收敛}\\>1\ \ \text{发散}\\ =1\ \ \text{失效}\\ \end{array} \right. $

    [$a^n;n^n$]

  • 积分判别法:(柯西)

    $u_n$与$\int^{\infty}_1f(x)\text dx$敛散性相同

交错级数

$$
\sum(-1)^{n-1}u_n
$$

莱布尼茨判别法:$\left. \begin{array}{r} \underset{n\rightarrow \infty}{\lim}u_n=0\\ u_n\text{单调递减}\\ \end{array} \right\} \Rightarrow \text{收敛}$

任意项级数

绝对收敛:$\underset{n=1}{\overset{∞}{\sum}}|u_n|$收敛
条件收敛:$\underset{n=1}{\overset{∞}{\sum}}u_n$收敛但$\underset{n=1}{\overset{∞}{\sum}}|u_n|$发散

收敛性质

考虑凑$\sum (-1)^n \dfrac1n$,变换后为$\sum \dfrac1n$

涉及$u_nv_n$,可凑$\dfrac1{n^p}$

  • $\sum{u_n}$收敛$\nRightarrow$$\sum{|u_n|}$

  • $\sum{u_n}$收敛$\left\{ \begin{array}{l} \sum{u_{n}^{2}}\text{收敛 }\ \ \ \ u_n\ge 0\\ \\ \sum{u_{n}^{2}}\text{不定 }\ \ \ \ u_n\text{任意}\\ \end{array} \right. $
  • $\sum{u_n}$收敛$\left\{ \begin{array}{l} \sum{u_{n}^{}u_{n+1}}\text{收敛 }\ \ \ \ u_n\ge 0\\ \\ \sum{u_{n}^{}u_{n+1}}\text{不定 }\ \ \ \ u_n\text{任意}\\ \end{array} \right. $
  • $\sum{u_n}$收敛$\nRightarrow$$\sum{(-1)^nu_n}$

  • $\sum{u_n}$收敛$\nRightarrow$$\sum{(-1)^n\dfrac{u_n}{n}}$

  • $\sum{u_n}$收敛$\left\{ \begin{array}{l} \sum{u_{2n}\text{、}\sum{u_{2n-1}}}\text{收敛 }\ \ \ \ u_n\ge 0\\ \\ \sum{u_{2n}\text{、}\sum{u_{2n-1}}}\text{不定 }\ \ \ \ u_n\text{任意}\\ \end{array} \right. $

  • $\sum{u_n}$收敛$\Rightarrow \sum({u_{2n-1}+u_{2n}})$收敛

    ​ $\Rightarrow \sum({u_{2n-1}-u_{2n}})$不定

  • $\sum{u_n}\Rightarrow $$\left\{ \begin{array}{l} \sum{\left( u_n+u_{n+1} \right)}\\ \\ \sum{\left( u_n-u_{n+1} \right)}\\ \\ \sum{u_n}+\sum{u_{n+1}}\\ \\ \sum{u_n}-\sum{u_{n+1}}\\ \end{array} \right. $收敛
  • $\sum{|u_n| }$收敛$\Rightarrow$$\sum{u_n}$收敛

    $\sum{u_n}$发散$\Rightarrow$$\sum{|u_n| }$发散

  • $\sum{u^2_n}$收敛$\Rightarrow$$\sum \dfrac {u_n}n$绝对收敛

  • $\left. \begin{array}{r} a,b,c\ne 0\\ au_n+bv_n+cw_n=0\\ u_n,v_n\text{收敛}\\ \end{array} \right\} \Rightarrow w_n\text{收敛}$
  • $\sum{u_n}$收敛$\left\{ \begin{array}{l} \sum{v_n}\text{发散}\Rightarrow \left( u_n+v_n \right) \text{发散}\\ \sum{v_n}\text{收敛}\Rightarrow \left( u_n+v_n \right) \text{收敛}\\ \end{array} \right. $

  • $\sum{u_n},\sum v_n$收敛$\Rightarrow$$\left\{ \begin{array}{l} \left( u_n+v_n \right) \text{发散 }\ \ \ \ u_n\ge 0,v_n\ge 0\\ \left( u_n+v_n \right) \text{不定 }\ \ \ \ u_n,v_n\text{不定}\\ \end{array} \right. $

  • $\sum{u_n},\sum v_n$收敛$\Rightarrow$$\left\{ \begin{array}{l} \sum{u_nv_n\text{收敛}}\ \ \ \ \ u_n\ge 0,\ v_n\ge 0\\ \sum{|u|v_n\text{收敛 }\ \ \ \ u_n\text{任意,}v_n\ge 0}\\ \end{array} \right. $

  • 若$\underset{n=1}{\overset{∞}{\sum}}u_n$收敛,则其中任意项数的和组成的新级数也收敛

  • 若$\underset{n=1}{\overset{∞}{\sum}}u_n$绝对收敛,则无论各项如何排序,新级数绝对收敛

常见级数

等比级数:$\sum{aq^{n-1}}=\left\{ \begin{array}{l} \dfrac{a}{1-q}\ \ |q|<1\\ \text{发散 }\ \ \ \ \ |q|\ge 1\\ \end{array} \right. $

$p$级数:$\sum{\dfrac{1}{n^p}}\left\{ \begin{array}{l} \text{收敛 }\ \ p>1\\ \text{发散 }\ \ p\le 1\\ \end{array} \right. $

广义$p$级数:$\sum{\dfrac{1}{n\left( \ln n \right) ^p}}\left\{ \begin{array}{l} \text{收敛}\ \ p>1\\ \text{发散}\ \ p\le 1\\ \end{array} \right. $

交错$p$级数:$\sum{\left( -1 \right) ^{n-1}\dfrac{1}{n^p}}\left\{ \begin{array}{l} \text{绝对收敛 }\ \ \ \ \ \ \ \ \ \ \ p > 1\\ \text{条件收敛 }\ \ \ \ 0 < p\le 1\\ \end{array} \right. $

$\dfrac{\ln n}{n^{p}}\left\{ \begin{array}{l} \text{收敛 }\ \ p>1\\ \text{发散 }\ \ p\le 1\\ \end{array} \right. $
$\sum{\dfrac{a^n}{n^s}}=\left\{ \begin{array}{l} a<1\ \ \text{收敛}\\ a>1\ \ \text{发散}\\ a=1\left\{ \begin{array}{l} s>1\ \ \text{收敛}\\ s\le 1\ \ \text{发散}\\ \end{array} \right.\\ \end{array} \right. $

调和级数:$\sum \dfrac1n $ 发散

其他级数

  • $u_n=\dfrac1{\sqrt{n(n+1)}}\left\{ \begin{array}{l} \ >\dfrac{1}{b_n}\ \ \ \ \dfrac{1}{b_n}\text{发散}\\ \ <\dfrac{1}{a_n}\ \ \ \ \dfrac{1}{a_n}\text{收敛}\\ \end{array} \right. $
  • $\sum\dfrac1{n^2-k}$收敛【$(n^2-k)\ge(n-a)^2$】
  • $\sum\dfrac1{a^n+kn}\rightarrow \lim \dfrac{\dfrac1{a^n+kn}}{\dfrac1{a^n}}=1$敛散一致
  • $A\sim B\Rightarrow A、B$敛散性相同

幂级数收敛域

幂级数一般形式:$\sum_{n=0}^∞a_n(x-x_0)^n$

幂级数标准形式:$\sum_{n=0}^∞a_nx^n$

收敛点:$\underset{n=1}{\overset{∞}{\sum}}u_n(x_0)$收敛

具体型问题

$\sum a_nx^n$型缺项幂级数$\sum u_n(x) $

$\dfrac1{1-x}=1+x+x^2+\cdots+x^n$

收敛域的求法

  1. 若$\underset{n \rightarrow ∞}{\lim}\left. | \right.\dfrac{a_{n+1}}{a_n} \left. \right|=\rho$,收敛半径$R$为$R=\left\{ \begin{array}{l} \dfrac{1}{\rho}\ \ \ \ \ \ \ \ \ \rho \ne 0\\ +{\infty }\ \ \ \ \ \rho =0\\ 0\ \ \ \ \ \ \ \ \ \ \rho =+\textit{∞ }\\ \end{array} \right.$
  2. 单独计算$±R$的敛散性

统一方法求收敛域

  1. 记$|u_n(x)|$
  2. 用分值判别法或根植判别法求$\rho$
  3. 令$\rho<1$,解不等式
  4. 单独讨论端点

阿贝尔定理

$\underset{n=1}{\overset{∞}{\sum}}a_nx^n$在$x_0$处收敛,$\forall |x|<x_0$,幂级数绝对收敛

$\underset{n=1}{\overset{∞}{\sum}}a_nx^n$在$x_0$处发散,$\forall |x|>x_0$,幂级数发散

推论1:已知$\underset{n=0}{\overset{∞}{\sum}}a_n(x-x_0)^n$

  • 若在$x_1$处收敛,则收敛半径$R\ge|x_1-x_0|$
  • 若在$x_1$处发散,则收敛半径$R\le|x_1-x_0|$
  • 若在$x_1$处条件收敛,则收敛半径$R=|x_1-x_0|$

推论2:已知$\underset{n=0}{\overset{∞}{\sum}}a_n(x-x_0)^n$、已知$\underset{n=0}{\overset{∞}{\sum}}b_n(x-x_0)^m$

  • $(x-x_0)^n$到$(x-x_0)^m$转换通过平移或乘$(x-x_0)^k$
  • $a_n$到$b_n$转化通过微积分变形:对级数求导或积分
  • 以下情况收敛半径不变
    • 平移或乘$(x-x_0)^k$
    • 对级数求导,收敛域可能缩小
    • 对级数积分,收敛域可能扩大
    • $\left(\ ,\ \right]$、$\left[\ ,\ \right)$,积分后$[\ ,\ ]$,求导后$(\ ,\ )$
    • $\sum \left(a_n+b_n\right)x^n$收敛半径:$R\ge\min\left\{R_1,R_2\right\}$

求和

套公式

$\sum \dfrac{x^n}n=-\ln(1-x),\ -1\le x<1$

$\sum nx^{n-1}=\dfrac 1{(1-x)^2},\ -1<x<1$

先求导积分后求和

  • $\sum(an+b)x^{an}$先积后导
  • $\sum \dfrac{x^{an}}{an+b}$先导后积
  • $\sum\dfrac{cn^2+dn+e}{an+b}=\sum_1+\sum_2$

拆解法

子型级数

$\underset{n=0}{\sum}{x^n}=\dfrac{1}{1-x}$

$\underset{n=0}{\sum}{nx^{n-1}}=\dfrac{1}{\left( 1-x \right) ^2}$

$\underset{n=0}{\sum}{n\left( n-1 \right) x^{n-2}}=\dfrac{2}{\left( 1-x \right) ^3}$

母型级数

$\underset{n=1}{\sum}{\dfrac{x^n}{n}}=-\ln \left( 1-x \right) $

$\underset{n=1}{\sum}{\left( -1 \right) ^n\dfrac{x^n}{n}}=-\ln \left( 1+x \right) $

$\underset{n=1}{\sum}{\dfrac{x^{2n-1}}{2n-1}}=\dfrac{1}{2}\ln \dfrac{1+x}{1-x}=\dfrac{\underset{n=1}{\sum}{\dfrac{1}{n}x^n}-\underset{n=1}{\sum}{\dfrac{1}{n}\left( -x \right) ^n}}{2}$

$\underset{n=1}{\sum}{\left( -1 \right) ^{n-1}\dfrac{x^{2n-1}}{2n-1}}=\arctan x$

泰勒函数

$\sum x^n=\dfrac1{1-x}$

$\sum\dfrac{x^n}{n!}=\text e^x$

$\sum\dfrac{2x^{2n}}{(2n)!}=\text e^x+\text e^{-x}$

$\sum \dfrac{n(n-1)}{2!}x^2=(1+x)^n$

$\sum (-1)^{n-1}\dfrac{x^{2n-1}}{(2n-1)!}=\sin x$

$\sum (-1)^n\dfrac{x^{2n}}{(2n)!}=\cos x$

$\sum (-1)^{n-1}\dfrac{x^n}n=\ln(1+x)$

拆解步骤

  1. 求收敛半径$R=\underset{n\rightarrow\infty}{\lim}\sqrt[n]{f(x^n)}<1$
  2. 求边界的敛散性
  3. 拆:变为单一幂函数
  4. 补:补为字母型(根据系数凑$x$的阶数)
  5. 凑:凑泰勒
  6. 无定义点补齐
  7. 抽象数列考虑微分方程求和

微分方程求和

  1. 验证$y,y’,y’’$满足微分方程
  2. 求通解
  3. 根据初始条件定$\text C$或求$x=x_0$时的和

展开

幂级数展开

函数展开:$f(x)=\sum a_nx^n$

积分展开:$\int_a^bf(x)\text dx=\sum a_n\dfrac{b^{n+1}-a^{n+1}}{n+1}$

导数展开:$\dfrac{\text df(x)}{\text dx}=\sum a_nx^{n-1}$

常见展开

$\dfrac1{x+c}$在$(x+x_0)$展开:$\dfrac1{x+c}=-\sum_{n=0}^{\infty}\dfrac{(x+x_0)^n}{(x_0-c)^{n+1}}$

傅里叶级数

迪利克雷收敛

$f(x)\in T_{2l}$,若在$[-l.l]$满足$\left\{ \begin{array}{l} \text{连续或有有限个第一类间断点}\\ \text{至多有限个极值点}\\ \end{array} \right. $,则$f(x)$在$[-l,l]$收敛 $$ S\left( x \right) =\left\{ \begin{array}{l} f\left( x \right) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\text{连续}\\ \dfrac{f\left( x-0 \right) +f\left( x+0 \right)}{2}\ \ \ \ \ x\text{间断}\\ \dfrac{f\left( -l+0 \right) +f\left( l-0 \right)}{2}\ \ \ \ x=±l\\ \end{array} \right. $$

傅里叶系数

$$
f(x)\sim \dfrac{a_0}2+\sum(a_n\cos\dfrac{n\pi x}l+b_n\sin \dfrac{n\pi x}l)
$$

  • 当$f(x)$为奇函数,其展开式$f(x)$$\sim$$ b_n\sum \sin \dfrac{n\pi x}l$
  • 当$f(x)$为偶函数,其展开式$f(x)$$\sim$$ \dfrac{a_0}2 +a_n\sum \cos \dfrac{n\pi x}l$
$$ \left\{ \begin{array}{l} a_0=\dfrac{1}{l}\int_{-l}^l{f}\left( x \right) \text{d}x\\ a_n=\dfrac{1}{l}\int_{-l}^l{f}\left( x \right) \cos \dfrac{n\pi x}{l}\text{d}x\\ b_n=\dfrac{1}{l}\int_{-l}^l{f}\left( x \right) \sin \dfrac{n\pi x}{l}\text{d}x\\ \end{array} \right. $$

周期$2\pi$:$\left\{ \begin{array}{l} \text{奇函数}\left\{ \begin{array}{l} a_n=0\\ b_n=\dfrac{2}{\pi}\int_0^{\pi}{f\left( x \right) \sin \left( nx \right)}\text{d}x\\ \end{array} \right.\\ \text{偶函数}\left\{ \begin{array}{l} a_n=\dfrac{2}{\pi}\int_0^{\pi}{f\left( x \right) \cos \left( nx \right) \text{d}x}\\ b_n=0\\ \end{array} \right.\\ \end{array} \right.$

延拓

$f(x)\in\text C_{[0,\pi]}$$\left\{ \begin{array}{l} \text{奇延拓}\Rightarrow F\left( x \right) =\left\{ \begin{array}{l} f\left( x \right)\ \ \ \ \ \ \ \ \ \ \ \ \ 0 < x\le \pi\\ 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=0\\ -f\left( -x \right) \ \ -\pi < x\le 0\\ \end{array} \right.\\ \text{偶延拓}\Rightarrow F\left( x \right) =\left\{ \begin{array}{l} f\left( x \right)\ \ \ \ \ \ \ \ \ \ \ \,\,\,\,0\le x\le \pi\\ \\ -f\left( -x \right) \,\,\,\,-\pi \le x < 0\\ \end{array} \right.\\ \end{array} \right. $


文章作者: Jarrycow
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Jarrycow !
评论
  目录