几何应用


高等数学在几何上的诸多应用

微分几何应用

切线 & 法线

切线 法线
方程 $y-y_0=y’(x_0)(x-x_0)$ $y-y_0=-\dfrac1{y’(x_0)}(x-x_0)$
斜率 $y’(x)$ $-\dfrac1{y’(x)}$
$x$轴截距 $x-\dfrac y{y’}$ $x+yy’$
$y$轴截距 $y-xy’$ $y+\dfrac x{y’}$

极值

极值必要条件:$f’(x_0)=0$

第一充分条件:$f’(x_0)$在$x_0$去心邻域两侧变号

第二充分条件:$f’’(x_0)<0$取极大值;$f’’(x_0)>0$取极小值

第三充分条件:

$f^{(m)}(x_0)=0(m=1,2,…,n-1),f^{(n)}(x_0)≠0$,则

$n$为偶数且$f^{(n)}(x_0)>0$取极小值
$n$为偶数且$f^{(n)}(x_0)<0$取极大值

凹凸性

凹:$f(\dfrac{x_1+x_2}{2}) < \dfrac{f(x_1)+f(x_2)}{2}\\f(\lambda_1x_1+\lambda_2x_2)<\lambda_1f(x_1)+\lambda_2f(x_1),\lambda_1+\lambda_2=1$

凸:$f(\dfrac{x_1+x_2}{2}) > \dfrac{f(x_1)+f(x_2)}{2}\\f(\lambda_1x_1+\lambda_2x_2)>\lambda_1f(x_1)+\lambda_2f(x_1),\lambda_1+\lambda_2=1$

凹凸判别:

$f’’(x)>0$——凹

$f’’(x)<0$——凸

拐点必要条件:

$f’’(x_0)=0$

拐点第一充分条件:$f(x)$在$x_0$去心邻域左右变号

拐点第二充分条件:$f’’(x_0)=0,f’’’(x_0)≠0$

第三充分条件:$f^{(m)}(x_0)=0(m=2,…,n-1),f^{(n)}(x_0)≠0$,则$n$为奇数为拐点

只有不可导点才可以既是极值又是拐点

曲率

曲率:$k=\dfrac{|y’’|}{(1+(y’)^2)^\frac 32}$

曲率半径:$R=\dfrac1k$【最陡的点曲率半径最小】

相关变化率:$\dfrac{\text d A}{\text dB}=\dfrac {\text dA}{\text dC}\cdot \dfrac{\text dC}{\text dB}$

积分学几何应用

平均值

$\overline{f}=\dfrac{1}{b-a}\int_a^b{f\left( x \right)}\text{d}x$

平面曲线弧长

直角坐标:$s=\int_a^b\sqrt{1+(y’(x))^2}\text dx $

参数方程:$s=\int_\alpha^\beta\sqrt{(x’(t))^2+(y’(t))^2}\text dt$

极坐标系:$s=\int_\alpha^\beta\sqrt{(r’(\theta))^2+(r’(\theta))^2}\text d\theta$

面积

直角坐标系:$S=\int_a^b|f(x)-g(x)|\text dx$

极坐标系:$S=\dfrac12\int_\alpha^\beta|r_2^2(\theta)-r_1^2(\theta)|\text d\theta $

旋转体

面积

旋转面积:$\text dS=2\pi y\text ds$

直角坐标系:$S=2\pi\int_a^b|y(x)|\sqrt{1+(y’(x))^2}\text dx$

参数方程系:$S=2\pi\int_\alpha^\beta|y(t)|\sqrt{(x’(t))^2+(y’(t))^2}\text dt$

极坐标系:$S=2\pi\int_\alpha^\beta\rho(\theta)\sin\theta\sqrt{\rho^2+\rho’^2}\theta$

体积

绕$x$轴:$V_x=\pi\int_a^b y^2\text dx$

绕$y$轴:$V_y=2\pi\int_a^b x|y|\text dx$

古尔金定理:$D$绕$L$旋转:$V=2\pi \iint_D r\text ds$ ($r=\dfrac{|ax+by+c|}{\sqrt{a^2+b^2}}$)

空间物体

空间体积:$V=\iiint_\varOmega \text dv$

形心:$\overline{x}=\dfrac{\iiint_{\varOmega}{x}\text{d}v}{\iiint_{\varOmega}{}\text{d}v}\ \ \ \ \overline{y}=\dfrac{\iiint_{\varOmega}{y}\text{d}v}{\iiint_{\varOmega}{}\text{d}v}\ \ \ \ \overline{z}=\dfrac{\iiint_{\varOmega}{z}\text{d}v}{\iiint_{\varOmega}{}\text{d}v}$

弧长:$L=\int_L\text ds=\int_a^b\sqrt{1+(y_x’)^2}\text dx$

形心:$\overline{x}=\dfrac{\int_L{x}\text{d}s}{\int_L{}\text{d}s}\ \ \ \ \overline{y}=\dfrac{\int_L{y}\text{d}s}{\int_L{}\text{d}s}\ \ \ \ \overline{z}=\dfrac{\int_L{z}\text{d}s}{\int_L{}\text{d}s}$

曲面

曲面面积:$S=\iint_\sum\text dS=\iint_{D_{xy}}\sqrt{1+z_x’^2+z_y’^2}\text dx\text dy$

形心:$\overline{x}=\dfrac{\iint_{\sum{}}{x}\text{d}S}{\iint_{\sum{}}{}\text{d}S}\ \ \ \ \overline{y}=\dfrac{\iint_{\sum{}}{y}\text{d}S}{\iint_{\sum{}}{}\text{d}S}\ \ \ \ \overline{z}=\dfrac{\iint_{\sum{}}{z}\text{d}S}{\iint_{\sum{}}{}\text{d}S}$

空间几何

向量

模:$\left|\overrightarrow a\right|=\sqrt{a_x^2+a_y^2+a_z^2}$

方向:$\cos \theta =\dfrac{\overrightarrow{a}\cdot \overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}=\dfrac{a_xb_x+a_yb_y+a_zb_z}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}\cdot\sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}} $

∆面积:$S=\left|\overrightarrow{AB}\times\overrightarrow{AC}\right|$

▱面积:$S=\left|\overrightarrow{AB}\times \overrightarrow{AD}\right|$

数量积(判垂直)

$\overrightarrow{a}\cdot \overrightarrow{b}$$=|\overrightarrow{a}||\overrightarrow{b}|\cos \theta =a_xb_x+a_yb_y+a_zb_z $

$\overrightarrow{a}$在$\overrightarrow{b}$投影:$\text{Prj}_{\overrightarrow{b}}\overrightarrow{a}=\dfrac{\overrightarrow{a}\cdot \overrightarrow{b}}{|\overrightarrow{b}|}=\dfrac{a_xb_x+a_yb_y+a_zb_z}{\sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}}$

$\overrightarrow{a}\bot \overrightarrow{b}\Leftrightarrow \overrightarrow{a}\cdot \overrightarrow{b}=0$

向量积(判平行)

$\overrightarrow{a}\times \overrightarrow{b}=$$|\overrightarrow{a}||\overrightarrow{b}|\sin \theta =\left| \begin{matrix}
\overrightarrow{i}& \overrightarrow{j}& \overrightarrow{k}\
a_x& a_y& a_z\
b_x& b_y& b_z\
\end{matrix} \right|$

$\overrightarrow{a}// \overrightarrow{b}\Leftrightarrow \overrightarrow{a}\times \overrightarrow{b}=0\Leftrightarrow \dfrac{a_x}{b_x}=\dfrac{a_y}{b_y}=\dfrac{a_z}{b_z}$

混合积(判共面)

$\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right] =\left( \overrightarrow{a}\times \overrightarrow{b} \right) \cdot \overrightarrow{c}=\left| \begin{matrix}
a_x& a_y& a_z\
b_x& b_y& b_z\
c_x& c_y& c_z\
\end{matrix} \right|$

$\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right] =0\Leftrightarrow $三线共面

平面 & 直线

交并:

$S_1\bigcap{S_2}:\left\{ \begin{array}{l} F\left( x,y,z \right) =0\\ G\left( x,y,z \right) =0\\ \end{array} \right. $ $S_1\bigcup_{}{}S_2\text{:}F\left( x,y,z \right) \cdot G\left( x,y,z \right) =0$

平移:图形$F(x,y,z)$平移$\overrightarrow S=\left|a,b,x\right|$后方程:$F(x-a,y-b,z-c)=0$
对称:关于$z$对称——将方程中$z\rightarrow -z$

伸缩:将图像沿$z$轴伸缩原$k$倍$\Rightarrow$$z\rightarrow \dfrac zk$

平面

平面法向量:$\overrightarrow{n}=\left( A,B,C \right) $

一般式:$Ax+By+Cz+D=0$

点法式:$A\left( x-x_0 \right) +B\left( y-y_0 \right) +C\left( z-z_0 \right) =0$

三点式:$\left| \begin{matrix}
x-x_1& y-y_1& z-z_1\
x-x_2& y-y_2& z-z_2\
x-x_3& y-y_3& z-z_3\
\end{matrix} \right|=0$ 平面过不共线三点$P_i(x_i,y_i,z_i)$

截距式:$\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1$ 平面过$(a,0,0)\ \ (0,b,0)\ \ (0,0,c)$

平面束方程:$A_1x+B_1y+C_1z+D_1+\lambda(A_2x+B_2y+C_2z+D_2)=0$必过交线$L$

平面束方程(不包括平面$A_2x+B_2y+C_2z+D_2=0$)

直线

方向向量:$\tau=(l,m,n)$

一般式:$\left\{ \begin{array}{l} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0\\ \end{array}\ \ \ \ \ \ \ \ \right. \overrightarrow{\tau }=\overrightarrow{n_1}\times \overrightarrow{n_2}$

标准式:$\dfrac{x-x_0}{l}=\dfrac{y-y_0}{m}=\dfrac{z-z_0}{n}$

**参数式:**$\left\{ \begin{array}{l} x=x_0+lt\\ y=y_0+mt\\ z=z_0+nt\\ \end{array} \right. $ $(x_0,y_0,z_0)$为直线上已知点

两点式:$\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}=\dfrac{y-y_1}{y_2-y_1}$

位置关系

平面 & 平面

$\pi _1\bot \pi _2\Leftrightarrow \overrightarrow{n_1}\cdot \overrightarrow{n_2}=0$

$\pi _1//\pi _2\Leftrightarrow \overrightarrow{n_1}\times \overrightarrow{n_2}=0$

面面夹角:$\theta =\arccos \dfrac{|\overrightarrow{n_1}\cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}||\overrightarrow{n_2}|}$

面面距离:$d=\dfrac{\left|D_1-D_2\right|}{\sqrt{A^2+B^2+C^2}}$

直线 & 直线

方向向量:$\overrightarrow{\tau _1}=\left( l_1,m_1,n_1 \right) \ \ \ \overrightarrow{\tau _2}=\left( l_2,m_2,n_2 \right) $

$L_1\bot L_2\Leftrightarrow \overrightarrow{\tau _1}\cdot \overrightarrow{\tau _2}=0$

$L_1//L_2\Leftrightarrow \overrightarrow{\tau _1}\times \overrightarrow{\tau _2}=0$

线线夹角:$\theta =\arccos \dfrac{|\overrightarrow{\tau _1}\cdot \overrightarrow{\tau _2}|}{|\overrightarrow{\tau _1}||\overrightarrow{\tau _2}|}$

直线 & 平面

$L\bot \pi \Leftrightarrow \overrightarrow{\tau }\times \overrightarrow{n}=0$

$L//\pi \Leftrightarrow \overrightarrow{\tau }\cdot \overrightarrow{n}=0$

线面夹角:$\theta =\arcsin \dfrac{|\overrightarrow{\tau }\cdot \overrightarrow{n}|}{|\overrightarrow{\tau }||\overrightarrow{n}|}$

点 & 线面

点到平面距离:$d=\dfrac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}}$

点到直线距离:$d=\dfrac{\left|\overrightarrow{M_0M}\times \overrightarrow{\tau}\right|}{\left|\overrightarrow \tau \right|}$

点关于面对称点:$(x_0+2At, y_0+2Bt,z_0+2Ct)\ \ \ \ t=-\dfrac{Ax_0+By_0+Cz_0+D}{A^2+B^2+C^2}$

柱面

母线//于坐标轴柱面:平行于$z$轴——$H(x,y)=0$

旋转轴为坐标轴旋转曲面:$\left\{ \begin{array}{l} f\left( x,z \right) =0\\ y=0\\ \end{array} \right. $绕$z$轴旋转面——$f(±\sqrt{x^2+y^2},z)$

空间直线旋转面:曲线表示为$\left\{ \begin{array}{l} x=f\left( z \right)\\ y=g\left( z \right)\\ \end{array} \right. $,则绕$z$轴旋转曲面为$x^2+y^2=f^2(z)+g^2(z)$

在坐标面投影曲线:$\left\{ \begin{array}{l} F\left( x,y,z \right) =0\\ G\left( x,y,z \right) =0\\ \end{array} \right. $,消$z$后得$H(x,y)=0$,则在$xy$面投影曲线为$\left\{ \begin{array}{l} H\left( x,y \right) =0\\ z =0\\ \end{array} \right. $

直线$L:\left\{ \begin{array}{l}A_1x+B_1y+C_1z+D_1=0\\A_2x+B_2y+C_2z+D_2=0\\\end{array} \right. $在平面$Ax+By+Cz+D=0$的投影:

$\left\{ \begin{array}{l} \left( A_1+A_2\lambda \right) x+\left( B_1+B_2\lambda \right) y+\left( C_1+C_2\lambda \right) z+\left( D_1+D_2\lambda \right) =0\\ Ax+By+Cz+D=0\\ \end{array}\ \ \ \ \lambda =-\dfrac{AA_1+BB_1+CC_1}{AA_2+BB_2+CC_2} \right. $

二次型曲面

单叶双曲面:$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}-\dfrac{z^2}{c^2}=1$

双叶双曲面:$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}-\dfrac{z^2}{c^2}=-1$

椭圆抛物面:$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=cz$

双曲抛物面:$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=cz$


文章作者: Jarrycow
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Jarrycow !
评论
  目录